Weld: A Common Runtime for Data Analytics

Stanford InfoLab, *MIT CSAIL
Motivation

Modern data apps combine many disjoint processing libraries & functions
 » Relational, statistics, machine learning, ...
 » E.g. PyData stack

+ Great results leveraging work of 1000s of authors
– No optimization across these functions
How Bad is This Problem?

Growing gap between memory/processing makes traditional way of combining functions worse

```python
data = pandas.parse_csv(string)
filtered = pandas.dropna(data)
avg = numpy.mean(filtered)
```

5-30x slowdowns in NumPy, Pandas, TensorFlow, etc
How We Solve This

SQL machine learning graph algorithms

Common Runtime

CPU GPU
How We Solve This

SQL
machine learning
graph algorithms

Weld runtime
Weld IR
Backends

Runtime API
Optimizer

CPU
GPU
Runtime API

Uses lazy evaluation to collect work across libraries

User Application

```javascript
data = lib1.f1()
lib2.map(data,
    item => lib3.f2(item)
)
```

Weld Runtime

- IR fragments for each function
- Combined IR program
- Optimized machine code

Data in application

Optimized machine code:

```
1101110
0111010
1101111
```
Weld IR

Designed to meet three goals:

1. **Library composition**: support complete workloads such as nested parallel calls

2. **Ability to express optimizations**: e.g. loop fusion, vectorization, loop tiling

3. **Explicit parallelism and targeting parallel hardware**
Weld IR

Small, powerful design inspired by “monad comprehensions”

Parallel loops: iterate over a dataset

Builders: declarative objects for producing results
 » E.g. append items to a list, compute a sum
 » Can be implemented differently on different hardware

Captures relational algebra, functional APIs like Spark, linear algebra, and composition thereof
Examples

Implement functional operators using builders

def map(data, f):
 builder = new vecbuilder[int]
 for x in data:
 merge(builder, f(x))
 result(builder)

def reduce(data, zero, func):
 builder = new merger[zero, func]
 for x in data:
 merge(builder, x)
 result(builder)
Example Optimization: Fusion

squares = map(data, x => x * x)
sum = reduce(data, 0, +)

bld1 = new vecbuilder[int]
bld2 = new merger[0, +]
for x in data:
 merge(bld1, x * x)
 merge(bld2, x)

Loops can be merged into one pass over data
Heterogeneous Hardware

A platform for heterogeneous computing.

One example: Creating a storage engine using FPGAs.

- Loading data from a persistent format into a memory format is often compute bound.
- Weld can accelerate these workloads
Implementation

Prototype with APIs in Scala and Python
 » LLVM and Voodoo for code gen

Integrations: TensorFlow, NumPy, Pandas, Spark
Results: Individual Workloads

SQL (TPC-H)

- Q1
- Q3
- Q6
- Q12

PageRank

- GraphMat
- Hand-opt
- Weld

Word2Vec

- TF
- TF-Op
- Weld

TF-Op = C++ operator
Results: Existing Frameworks

Integration effort: 500 lines glue, 30 lines/operator
Results: Cross-Library Optimization

Pandas + NumPy

- Current
- Weld, no CLO
- Weld, CLO
- Weld, 12 core

Spark SQL UDF

- Scala UDF
- Weld

31x
290x
14x
Conclusion

The way we compose software will have to change to efficiently use modern hardware

Lots of open questions and design decisions!
 » Leveraging specialized hardware, domain info, …

Open source: soon!
Why Don’t Compilers Solve This?

Languages and intermediate representations (IRs) make it hard to optimize across libraries

» Main abstraction is *shared memory*
 (must worry about aliasing, order, etc)

Most compilers don’t model parallel operations

» Makes high performance code generation for heterogeneous parallel hardware even more difficult
Results: Modeling Costs

Takeaway: Cost curves *resemble* actual runtimes
Cost Model

Inspired by cost models for in-memory databases

+ modeling nested parallelism and choices among implementations of data structures

Models cache contention, costs of atomic instructions, etc.
Builders

Hardware independent and explicitly parallel

Three operators:

`merge(builder, value)`: Merge a value into the builder and return a new builder

`result(builder)`: destroy the builder and return a value

`for(data, builders, func)`: iterate over data, potentially merging values into one or more builders in parallel
Optimizer

Cost Based Optimizer similar to an RDBMS

Builder Implementations: How to implement a particular builder (e.g., global vs. local hash tables)

Transforms: Should expressions be fused, vectorized, inlined, etc.

Quantifies choices among optimizations using data from the program
Related Work

HyPer, LegoBase, Tupleware: target relational algebra and serial UDFs; no nested parallelism

LLVM, OpenCL: low-level shared-memory model

NESL, parallel FPs: not closed under optimizations

DSLs: Weld focuses on integration with existing libraries and cross-library optimization
Observation

Many analytics algorithms can be written with a few “embarrassingly parallel” operators

» See how many run on MapReduce / Spark

Focus on these instead of general programs
The Goal

SQL

common IR

machine learning

graph algorithms

CPUs

GPUs

...
Results on GPUs

SQL (TPC-H)

- **Number of threads**
 - Q1
 - Q3
 - Q6
 - Q12

- **Runtime [secs]**
 - Ocelot
 - Weld
 - SQL (TPC-H)

Nearest Neighbors

- **Runtime [secs]**
 - TF
 - Bond

PageRank

- **Runtime [secs]**
 - Bond (CPU)
 - LightSpMV
 - Bond (GPU)
Example Transformations

```python
def query(products: vec[{dept:int, price:int}]):
    sum = 0
    for p in products:
        if p.dept == 20: sum += p.price
```

```
def query(dept: vec[int], price: vector[int]):
    sum = 0
    for i in 0..len(users):
        if dept[i] == 20: sum += price[i]
```

```
for i in 0..len(products) by 4:
    sum += price[i..i+4] * (dept[i..i+4] == [20,20,20,20])
```
Weld Results: TPC-H Q6

Runtime (sec)

- Python: 0.53
- Java: 0.14
- C: 0.08
- HyPer Database: 0.11
- Optimized: 0.03
- Weld: 0.03
Effect of Optimizations

Transformations usable on any Weld program
How Weld Fits Into Applications

User Application

```
data = lib1.f1()
lib2.map(data,
    item => lib3.f2(item))
```

Runtime API

IR fragments for each function

Combined IR program

Optimized program

Machine code

Weld Runtime
Example: Spark + NumPy

data = spark.sql("select user.features from users where age > 20")

scores = data.map(lambda vec: scoreMatrix * vec)

average = scores.mean()
Example: Spark + NumPy

data = spark.sql("select user.features from users where age > 20")

scores = data.map(lambda vec: scoreMatrix * vec)

average = scores.mean()
Runtime API

Uses lazy evaluation to collect work across libraries

User Application

```javascript
data = lib1.f1()
lib2.map(data,
  item => lib3.f2(item)
)
```

Weld Runtime

IR fragments for each function

Combined IR program

Optimized machine code

Data in application
Supported Optimizations

<table>
<thead>
<tr>
<th>Loop Fusion</th>
<th>Loop Tiling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row-to-Column</td>
<td>Constant Folding</td>
</tr>
<tr>
<td>Common Subexpressions</td>
<td>Branch Predication</td>
</tr>
<tr>
<td>Inlining</td>
<td>Vectorization</td>
</tr>
<tr>
<td>Insert free() Calls</td>
<td>...</td>
</tr>
</tbody>
</table>