2018 Spring Retreat
2018 Spring Retreat:
Lab Overview and Update

John Ousterhout
Faculty Director
Thank You, Sponsors!
Platform Lab Faculty

- **Bill Dally**: Architecture
- **Sachin Katti**: Networking
- **Christos Kozyrakis**: Architecture, System Software
- **Phil Levis**: Embedded Systems
- **Nick McKeown**: Networking
- **John Ousterhout**: Granular Computing (Fac. Director)
- **Guru Parulkar**: Networking (Exec. Director)
- **Balaji Prabhakar**: Networking
- **Mendel Rosenblum**: Distributed Systems, Networking
- **Keith Winston**: Networking, Granular Apps
- **Matei Zaharia**: Big Data, Cloud Computing
Lab mission:
define new hardware/software platforms
that enable exciting new classes of applications
What is a Platform?

- General-purpose hardware or software substrate
- Simplifies construction of a class of applications (or higher-level platforms)
 - Solves common problems
 - Usually introduces (simplifying) restrictions
- Examples:
 - Relational databases → Enterprise applications
 - HTTP + HTML + JavaScript → Internet commerce
 - GFS + MapReduce → Big Data (large-scale analytics)
 - Smart phones + GPS → Google Maps, Uber, …
Computers
Manage Information

Computers
Control Devices

Collaborative Device Swarms

The next frontier in computing
Big Control

- Hypothesis: device swarms will be managed centrally from datacenters
- Infrastructure for Big Data can’t meet needs
- Need new platforms to enable large-scale control applications

Application Platform for Swarm Control
- Scalable abstractions for control

Granular Computing
- Enable applications composed of microsecond-scale tasks

Self-Programming Networks
- Predictable and adaptable communication
Why Granular Computing?

Centralized control of large device swarms

1000 – 1,000,000 devices

Real-time response

1 – 1000 events/sec/device

Control Application

Cascade of internal tasks:
- Integration
- Fusion
- Inference
- Condition checks
- Triggers
- Planning
- Actuation
Why Granular Computing?

New model for cloud computing

- Traditional approach: run large jobs for a long time
 - Hadoop
 - Spark
- Rent servers by the hour
- New approach: smaller execution units (serverless)
 - Execute individual requests (function calls)
 - Pay for CPU time and memory used
 - Example: Amazon Lambda
- Minimum size still large: 100 ms

Can we support 1000x smaller units of execution? What is the limit?
Why Granular Computing?

Real-time data-intensive processing

- **Goals:**
 - Incorporate large amounts of data in decision-making
 - Respond in real-time: < 200 ms

- **Not possible today**
 - Big Data applications execute for minutes → hours

- **Solution: granular computing**
 - Divide computation into large numbers of small tasks
 - Run tasks concurrently
Problem: Software Stacks too Slow

- Existing software stacks highly layered
 - ✔ Great for software structuring
 - ✗ Bad for latency

- Designed for disk-based computing (10 ms+)

- Today’s stacks can’t support granular computing:
 - Linux thread create/delete: 9 µs
 - Linux RPC: 20 µs best case
 - 200 – 1000 µs if network loaded
 - Schedule Spark job: 1 second?

Granular computing requires new software stack
Projects in Granular Computing

- **System infrastructure:**
 - Homa network protocol: low latency datacenter transport
 - Arachne: core-aware thread management
 - NanoLog: extremely fast logging
 - gg: framework for granular apps on serverless
 - Pocket: ephemeral storage for gg
 - Shinjuku: preemptive run-time system for low-latency applications

- **Applications:**
 - ExCamera: granular video processing
 - Millisort: sorting at scale in 1 ms

Overall goal: enable smallest possible tasks (10-100 µs?)
Self-Programming Networks

- **New approach to network management:** the network programs itself
 - Operators specify declarative goals
 - Network monitors, controls itself to achieve goals
 - Leverage machine learning techniques

- **Why SPNs?**
 - Writing control programs very difficult today
 - Challenges increasing over time:
 - Diverse applications with different needs
 - Unpredictable new applications and workloads
 - Increasing requirements for performance and predictability
 - Multiple modalities: mobile, long-haul wired, datacenter
Self-Programming Networks, cont’d

- **Control specified at a higher level**
 - What you want (declarative)
 - Not how to get it

- **Network monitors, controls itself:**
 - **Sense** to collect data on behavior, needs
 - **Infer** global state, bottlenecks, causes of symptoms
 - **Learn** best control behaviors (e.g. deep reinforcement learning)
 - **Forecast** future behaviors, impact of changes
 - **Control** network configuration, policies

- **Heavy use of machine learning**
SPN Projects

- Clock synchronization
 - Large-scale trials
 - Use at higher levels (e.g. consensus, DBs, distributed ledgers)
- Network telemetry via tomography (also in trials)
- ChatBot: querying and visualization of SPNs
- Smart NICs (push SPN mechanism to NICs)
- Self-driving radios
- Decoupling prediction and control
- New pipeline for mapping data (new approach to compression)
New Initiatives

- Smart NICs project (Prabhakar, Rosenblum)
- Accelerator for SAT (Dally)
- Massively parallel lambda computing (Kozyrakis, Winstein, Zaharia)
- Baby steps towards a platform for granular computing (Ousterhout)
- ORAN Alliance (Katti)
 - Standardize 5G network architecture and interfaces
 - Technical chair: Sachin Katti
Awards

- **Test of Time:**

- **Best papers:**
 - Ana Klimovic, et al: Memorable Paper Award at NVM Workshop
 - Turakhia, et al.: Best Paper Award at ASPLOS 2018 (Darwin)
Recent/Imminent Graduates

Manu Bansal
Techniques for building Predictable Stream Processing Pipelines

Mingyu Gao
Near-Data Processing

Yilong Geng
Self-Programming Networks: Architecture and Algorithms

Sam Grossman
Graph Processing

Amit Levy
Multiprogramming a 64 KB Computer Safely and Efficiently

Raghu Prabhakar
Coarse-Grain Reconfigurable Architectures

Zi Yin
Natural Language Processing for ChatBot
Thursday Agenda

1:00 Welcome, Introductions, Platform Lab Overview
 John Ousterhout

1:45 SDR: Self Driving Radios
 Sachin Katti

2:10 The Case for Decoupling Prediction and Control in Modern Networks
 Sandeep Chinchali

2:35 Update on Arachne
 Henry Qin

3:00 Break

3:30 DIY Hosting for Online Privacy
 Shoumik Palkar

3:55 Accelerating Data Analytics with FPGAs
 James Thomas

4:20 Pocket: Ephemeral Storage for Serverless Analytics
 Ana Klimovic

4:45 Lightning talks for posters

5:15 Reception/posters

6:30 Dinner

8:00 Evening activities
Friday Agenda

9:00 Closing the Loop on Secure Operating System Design
 Phil Levis

9:25 Teams of Collaborating Robots for Flexible Manufacturing
 Mac Schwager

9:50 Shinjuku: Reconciling Low Tail Latency with Preemptive Scheduling
 Kostis Kaffes

10:15 Wedge: A New Frontier for Pull-Based Graph Processing
 Sam Grossman

10:40 Recreation and Informal Conversations

12:00 Lunch

1:00 Salsify: Low-Latency Video Through Joint Control of a
 Video Codec and Transport Protocol
 Keith Winston

1:25 Millisort: An Experiment in Granular Computing
 Seo Jin Park

1:50 X-Ray Vision using Wireless Signals
 Manikantku Kotaru

2:15 Pantheon: a Community Evaluation Platform for Congestion Control
 Francis Yan

2:40 Break

3:00 Progress on the SPN ChatBot: Handling Compound and
 Domain-Specific Queries
 Zi Yin and
 Vin Sachidananda

3:25 Byzantine Fault Tolerant Clock Synch. in Datacenter Networks
 Shiyu Liu

3:50 Industrial Feedback
Questions/Discussion