MilliSort: an Experiment in Flash Bursts

Yilong Li
with Seo Jin Park, Collin Lee, John Ousterhout
Introduction: Flash Burst

- Today’s large-scale datacenter applications run from seconds to hours

- Flash burst: a new style of datacenter computation
 - Very short lifetime (e.g., < 10 ms)
 - Harness hundreds or thousands of servers
 - Enable data-intensive real-time analytics

- Understand requirements of a general-purpose infrastructure for executing and managing flash burst application
 - Create an example application (i.e., MilliSort) to learn about flash burst

- Lessons learned:
 - Possible to organize 1000s of servers to perform non-trivial computation in <10 ms
 - Group communication operations are critical to performance
 - Full bisection bandwidth is necessary for best performance of shuffle
Introduction: MilliSort

- **MilliSort**: sort as many small records as possible within 1 ms, using any number of servers available in a datacenter

- **Why sorting?**
 - Intensive and unpredictable communication
 - Interesting algorithm
 - Useful building block in distributed computation

- **Early results**
 - Sort 4.6 million 100-byte records using **700** servers (**106x** speedup) in 1 ms
 - # servers harnessed & data per server increase linearly with time budget
 - # records sortable increases quadratically with time budget
Outline

- Millisort Overview
- Implementation & Cost Estimator
- Measurements
The MilliSort Challenge

- How many small records can you sort in 1 ms using unlimited number of servers available in a datacenter?
 - 100-byte records (10-byte keys and 90-byte values)
 - Input data already distributed evenly among servers in DRAM
 - Result data *not* required to be distributed evenly across servers
Most distributed sorting algorithms are a form of bucket sort

- **Local sort**: each server sorts its initial data
- **Partitioning bucket boundaries**: determine the key range each server stores after sorting
- **Shuffle data**: each server transmits its records to the targets

Advantages:
- Optimize network bandwidth usage
- Simple to implement
Terminology:
- **Pivot**: key chosen to divide local records
- **Splitter**: pivot chosen to be final bucket boundary

Parameters:
- **M**: number of machines
- **P**: number of pivots per server

If $P = M$, the skew factor of the final data bucket is at most 2.
Terminology:
- **Pivot**: key chosen to divide local records
- **Splitter**: pivot chosen to be final bucket boundary

Parameters:
- **M**: number of machines
- **P**: number of pivots per server

If \(P = M \), the skew factor of the final data bucket is at most 2.

MilliSort: A Strawman Partition Scheme

One node can’t sort \(M^2 \) pivots fast enough!
Recursive Partitioning

- **Key idea:** sorting pivots is just a smaller version of MilliSort
 - Apply distributed bucket sort again
 - Use a smaller set of servers

- **Recursive reduction:**
 - Assign one pivot sorter every R servers ($\#$ pivot sorters $= M/R$)
 - L2 pivot: chosen to divide L1 pivots on pivot servers
 - L2 splitter: L2 pivot chosen to be L1 pivot bucket boundary
Recursive Partitioning

- **Key idea:** sorting pivots is just a smaller version of MilliSort
 - Apply distributed bucket sort again
 - Use a smaller set of servers

- **Recursive reduction:**
 - Assign one **pivot sorter** every R servers (# pivot sorters = M/R)
 - $L2$ pivot: chosen to divide $L1$ pivots on pivot servers
 - $L2$ splitter: $L2$ pivot chosen to be $L1$ pivot bucket boundary
- **Key idea:** sorting pivots is just a smaller version of MilliSort
 - Apply distributed bucket sort again
 - Use a smaller set of servers

- **Recursive reduction:**
 - Assign one pivot sorter every R servers (# pivot sorters = M/R)
 - L2 pivot: chosen to divide L1 pivots on pivot servers
 - L2 splitter: L2 pivot chosen to be L1 pivot bucket boundary
Key idea: sorting pivots is just a smaller version of MilliSort
- Apply distributed bucket sort again
- Use a smaller set of servers

Recursive reduction:
- Assign one pivot sorter every \(R \) servers (\# pivot sorters = \(M/R \))
- L2 pivot: chosen to divide L1 pivots on pivot servers
- L2 splitter: L2 pivot chosen to be L1 pivot bucket boundary
• Key idea: sorting pivots is just a smaller version of MilliSort
 ○ Apply distributed bucket sort again
 ○ Use a smaller set of servers

• Recursive reduction:
 ○ Assign one pivot sorter every R servers (# pivot sorters = M/R)
 ○ L2 pivot: chosen to divide L1 pivots on pivot servers
 ○ L2 splitter: L2 pivot chosen to be L1 pivot bucket boundary
As data is divided over more servers:
- Each node must send more messages
- Each message gets smaller
- Fixed per-message SW overhead limits performance eventually

Reduce # messages to send per server with 2-level shuffle
- Divide servers into \sqrt{M} groups (\sqrt{M} servers each)
- Shuffle within groups & shuffle between groups
- Each server sends fewer messages
- Double network bandwidth usage
Outline

- Millisort Overview
- Implementation & Cost Estimator
- Measurements
Implementation

- **Prototype implementation using network transport infrastructure from RAMCloud**
 - Kernel bypass with DPDK or Infiniband Verbs: 5 µs RTT, 25 Gbps throughput
 - Arachne for user-level thread and core management
 - ~1500 lines of C++ code for group communication operations
 - ~3000 lines of C++ code for Millisort application

- **Limitations due to RAMCloud’s dispatch model**
 - Require all outgoing/incoming messages to pass through a single dispatch thread
 - Single dispatch thread w/o batch send: ~1.6 million messages/second
Goal: quickly explore a wide range of configurations
 ○ Try larger system scales than are possible with the implementation
 ○ Find optimal configuration from the configuration space (e.g., # servers, # pivot sorters, # levels of partitioning, etc.)
 ○ Vary basic technology parameters (e.g., network speed, latency, software overhead, etc.)

Cost estimator implementation
 ○ ~900 lines of Python code
 ○ Simulate MilliSort algorithm at a high level (i.e., a series of group comm. ops)
 ○ Estimate broadcast, gather, and all-gather cost using a message cost model
 ○ Shuffle cost is modeled differently, as a function of the shuffle message size
Model Calibration: Message Cost Model

- Message cost modeled as a function of message size
 - $\text{MsgDelay}(\text{msgSize})$: one-way delay (incl. SW overhead)
 - $\{\text{Send, Recv}\}\text{Cost}(\text{msgSize})$: marginal cost to send/receive a message
- Works well for broadcast, gather, and all-gather operations
Cost estimator predicts total sort time quite accurately at small scale.

Total sort time, implementation vs. cost estimator

9,550 records per node
Outline

● Millisort Overview
● Implementation & Cost Estimator
● Measurements
How many records can you sort in 1 ms?

- **Cost estimator parameters**
 - 4 cores / node, 2 threads / core
 - 40 Gbps full bisection network

- **Within 1 ms, MilliSort can sort 4.6 million records using 700 servers**
 - ~600 ns CPU time (phys. core) to sort one record
How many records can you sort in 1 ms?

- **Cost estimator parameters**
 - 4 cores / node, 2 threads / core
 - 40 Gbps full bisection network

- **Within 1 ms, MilliSort can sort 4.6 million records using 700 servers**
 - ~600 ns CPU time (phys. core) to sort one record

- **Within 10 ms, MilliSort can sort 1 billion records using 13600 servers**

<table>
<thead>
<tr>
<th></th>
<th>1 ms</th>
<th>10 ms</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total records</td>
<td>4.6 million</td>
<td>1 billion</td>
<td>225X</td>
</tr>
<tr>
<td># records/server</td>
<td>6600</td>
<td>76000</td>
<td>11.5X</td>
</tr>
<tr>
<td># servers</td>
<td>700</td>
<td>13600</td>
<td>19.4X</td>
</tr>
</tbody>
</table>
How many records can you sort in 1 ms?

- **Cost estimator parameters**
 - 4 cores / node, 2 threads / core
 - 40 Gbps full bisection network

- **Within 1 ms, MilliSort can sort 4.6 million records using 700 servers**
 - ~600 ns CPU time (phys. core) to sort one record

- **Within 10 ms, MilliSort can sort 1 billion records using 13600 servers**

>100X since shuffle becomes more efficient

<table>
<thead>
<tr>
<th></th>
<th>1 ms</th>
<th>10 ms</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total records</td>
<td>4.6 million</td>
<td>1 billion</td>
<td>225X</td>
</tr>
<tr>
<td># records/server</td>
<td>6600</td>
<td>76000</td>
<td>11.5X</td>
</tr>
<tr>
<td># servers</td>
<td>700</td>
<td>13600</td>
<td>19.4X</td>
</tr>
</tbody>
</table>
Impact of Time Budget on MilliSort

![Graph 1: # of records sortable vs. Time budget (ms)]

![Graph 2: Machine Count vs. Time budget (ms)]
MilliSort can coordinate 1000s of machines for sorting in a few milliseconds
MilliSort can coordinate 1000s of machines for sorting in a few milliseconds.

Impact of Time Budget on MilliSort

Increase quadratically

Increase linearly
Time to Sort 4.6 Million Records, Vary # Servers

![Graph showing time to sort vs. number of servers]

- Total (2L shuffle)
- Total (1L shuffle)
- 2L shuffle
- 1L shuffle
Time to Sort 4.6 Million Records, Vary # Servers

1L shuffle quickly becomes very inefficient
Time to Sort 4.6 Million Records, Vary # Servers
Time to Sort 4.6 Million Records, Vary # Servers

Total time bottoms out as partitioning cost becomes more significant
Time to Sort 4.6 Million Records, Vary # Servers

Shuffle accounts for >50% total time
Multi-level Partitioning

The graph shows the partition time (ms) on the y-axis against the number of machines on the x-axis. Different levels of partitioning are represented by different colors:

- 1 level
- 2 levels
- 3 levels
- 4 levels

As the number of machines increases, the partition time also increases, with different levels of partitioning showing varying degrees of scalability.
Multi-level Partitioning

1-level partitioning is not scalable
Multi-level Partitioning

Partitioning cost increases linearly with # servers
Multi-level Partitioning

Structuring communication hierarchically is a useful technique to handle large cluster sizes.
We developed MilliSort as an experiment to explore the notion of flash burst computation.

Flash burst
- Possible to harness 1000s of servers working together for a few milliseconds
- Communication must be structured hierarchically to handle large cluster sizes
- Full bisection bandwidth is necessary for best performance

Low-latency distributed sorting
- # records sortable grows quadratically with the time budget
- Efficient group communication is essential, especially shuffle
- Easier to scale # machines than per-server data
Questions?