Reflections on 5 Years of the Platform Lab

John Ousterhout
Background

- **Overall interest:** enabling **low-latency computation in datacenters** (at **scale**)

- **Approach to research:**
 - Explore a small number of topics in great depth
 - Build systems that really work

- **Status in May 2015:**
 - RAMCloud project winding down
 - Raft consensus algorithm published in 2014, widespread adoption underway
 - What’s next?

- **Solve infrastructure problems uncovered by RAMCloud:**
 - Threading
 - Network transport
 - Logging
Final RAMCloud Pubs

- Rules-based programming (USENIX ATC 2015)
 Ryan Stutsman (Utah)

- Implementing exactly-once RPC semantics (SOSP 2015)
 Collin Lee, Seo Jin Park (MIT)

- SLIK: secondary indexes for RAMCloud (USENIX ATC 2016)
 Ankita Kejriwal (Google)
Mendel's Student's Projects

- TorcDB: A graph database model implemented on top of RAMCloud

Jonathan Ellithorpe (Google)

- Explored different database models on RAMCloud
 - GraphDB data model looked most promising - irregular, unpredictable access patterns

- TorcDB's performance compared well against commercial graph databases
 - Queries over only a few hops on the graph - Low latency a big win
 - Queries over 3 or more hops – much data- low latency not helpful – a bandwidth problem

- A large RAMCloud client effort – Would have been useful to have:
 - Large consistent reads
 - Transaction support for secondary indexes
 - Snapshotting and bulk data loading
 - List data structure
PL Projects (Granular Computing)

- **Homa transport protocol (SIGCOMM 2018)**
 Behnam Montazeri (Google)
 - Replacement for TCP in datacenters
 - 10-100x better tail latency (especially for short messages)
 - Key ideas: receiver-driven scheduling, use network priority queues

- **Arachne: new threading architecture (OSDI 2018)**
 Henry Qin (Square)
 - Core-aware
 - System allocates cores to applications
 - Application library schedules user-level threads on cores
 - More efficient core utilization
 - Better app latency and throughput
 - Performance isolation
PL Projects, cont’d

- **NanoLog**: world’s fastest logging system (USENIX ATC 2018)
 - *Stephen Yang*
 - Move logging functionality out of runtime hot path (preprocess, postprocess)
 - Log only minimal binary info
 - Simple compression to reduce I/O
 - Result: runtime log overheads 10s of ns, vs. ~1 µs

- **CURP**: using commutativity to reduce replication cost (NSDI 2019)
 - *Seo Jin Park (MIT)*

- **MilliSort and MilliQuery**: experiments in flash bursts
 - *Yilong Li and Seo Jin Park (MIT)*
 - How many servers can be harnessed for computations lasting 1-10 ms?
 - Exposed interesting infrastructure challenge: coordination, shuffles
Personal Projects

- “A Philosophy of Software Design”:
 - Book on software design
 - Published 2018

- “Always Measure One Level Deeper” (CACM 2018):
 - Trying to fix problem in systems community with superficial and misleading evaluations
PhD Graduates

- Ankita Kejriwal, 2017 (Google)
- Benham Montazeri, 2019 (Google)
- Henry Qin, 2019 (Square)
- Seo Jin Park, 2019 (MIT postdoc)
- Stephen Yang, 2020 (Interviewing: syang0@alumni.stanford.edu)
The Next 5 Years

- No longer taking on new PhD students
 - Retirement not here yet, but looming

- A different style of research: personal projects
 - Replace TCP with Homa in the datacenter
 - High-throughput dispatching
 - Many other ideas

- Still interested in engaging with companies
Questions/Discussion