Background

CORD is a multi-access edge cloud
- Built using commodity servers and white-box switches/access devices (PON, RAN)
- Runs both scalable cloud services and disaggregated Telco services (BNG, EPC)
- Configured as *Base Platform* + One or more *Service Profiles*

XOS is a framework for configuring and operating a cloud platform
- Decouples *Service Control Plane* and *Service Data Plane*
- Generates the control plane from a set of *declarative models*

CORD and XOS are open source projects of the ONF
- Working with network operators to take these technologies to production
Multi-Access Edge
Reference Design – Multi-Access Edge Cloud

Global Automation

Local Service Control

Cloud Orchestrator

Servers / Accelerators

VNF1

VNF2

VNF3

Overlay

Fabric

VNF4

VNF5

SDN Controller

Leaf-Spine Fabric

SD-PON

PON Controller

OLT

SD-RAN

RAN Controller

BBU

Access Peripherals

Telco Cloud
Exemplar Platform – CORD

Global Automation

- vSG
- vEPC
- Openstack/Kubernetes
- OCP Servers

XOS

- vSG
- vEPC
- ... (Exemplar Platform)

ONOS

- ONOS
- VOLTHA
- OCP OLT
- vOLT
- vRAN

Access Peripherals

OCP Switches (+ P4 Runtime)

VTN

Fabric

vRouter

Telco Cloud
Disaggregation – Micro-Services & SDN Applied to the Central Office –
Legacy Central Office

CPE – Customer Premises Equipment
OLT – Optical Line Termination
BNG – Broadband Network Gateway
Disaggregation

CPE – Customer Premises Equipment
OLT – Optical Line Termination
BNG – Broadband Network Gateway
Disaggregation

CPE – Customer Premises Equipment
OLT – Optical Line Termination
BNG – Broadband Network Gateway
Functional Specification

CORD Controller

Service Graph for Residential CORD
CORD – An Extensible Platform
– Configuring and Controlling an Integrated System –
Automated Configuration

- **Workflow**
 - TOSCA Workflows
 - Provision & Configure Services
 - Runtime Operation
 - Protobuf (xproto) Models
 - Schema that Model Services
 - Core set Loaded at Boot Time
 - Dynamically Updated at Runtime
 - Helm Charts
 - Containers that Implement Services
 - Core set Loaded at Boot Time
 - Dynamically Updated at Runtime

- **XOS**
- **ONOS**
- **Kubernetes (OpenStack)**
- **OCP Hardware**
- **CORD POD**

- **Ctrl App**
- **VNF**

- **Lifecycle Management**
Lifecycle Management

XOS is responsible for *Service Control Plane*
- Support for *configuring and controlling* services
- Support for incremental upgrades (transitioning state/interfaces)

Kubernetes is responsible for *Service Data Plane*
- Support for *implementing* services (scale up/down, HA)
- Support for incremental upgrades (rollout/rollback)
Subscribers

Data Plane

OCP Hardware

XOS

Operators

Telemetry/Diagnostic Data

Configure/Provision

Cloud-based Automation Tools

Control

(Self-Service Portal)

Operational View

XOS provides Visibility and Control at the granularity of per-subscriber service chains.

...a PaaS for Service Chains
 – Provision
 – Isolate
 – Distribute
 – Migrate
Mobile Cloud

– Value of Service Chains –
What’s Different about 5G?

Earlier generations were about improving broadband technology

5G is fundamentally about supporting new services
 • Internet-of-Things
 • Immersive UIs
 • Public Safety

What unique capability does the mobile access network offer?
 • Low-latency proximity to end-users
 • Intrinsic support for mobility

Challenge of 5G is to Simultaneously Support...
 • Low Latency – Moving functionality to the edge, closer to devices
 • Mobility – Accessing that edge functionality while continuing to be mobile
Challenge

Central Challenge of 5G is to Simultaneously Support...

- Low Latency – Moving functionality to the edge, closer to devices.
- Mobility – Accessing that edge functionality while continuing to be mobile.

Other Factors...

- Performance dictates that functionality be implemented in the most appropriate hardware (e.g., GPUs, Switching Fabric).
- Autonomy dictates that different stakeholders will be responsible for controlling and managing different components.
- Monetization dictates the need to offer differentiated services to different classes of subscribers/applications.
- Costs dictates a distributed solution, with some functions running in the datacenters and some running in a scalable number of edge sites.
- Dynamicity dictates the need for local (edge) control with tight control loops.
Mobile Broadband (2G – 4G)

Access-Edge

Datacenter
Move Functionality to the Edge
Mobile Cloud (5G)

Datacenter

Access-Edge
Mobile Cloud (5G)
Requirements

Heterogeneous – Range of functional element implementations
Multi-Tenant – Multiple stakeholders managing functional elements
Distributed – Functional elements span multiple clouds
Isolation – Differentiated resource allocation between service chains
Mobility – Move service chains from one edge cloud to another
XOS Overview

– A PaaS for Service Chains –
CORD Innovations

Virtualization and Disaggregation

- Pre-requisite for moving functionality to the edge
- Ability to run functionality in both switches and servers

Explicit Support for Service Chains

- A first class abstraction that defines a control framework
- Operations to provision, distribute, isolate, and migrate
What is XOS?

xproto – A declarative language for specifying models
 - *Protocol Buffers*: extended to support inheritance, relationships, and predicates

xosgenx – An extensible toolchain to enforce models on an operational system
 - *Targets*: APIs, Access Control, ORM, Synchronizer Framework,…

core.xproto – A default (and malleable) set of core models
 - *Models*: Service, ServiceDependency, ServiceInstance, ServiceInstanceLink,…

Chart.yaml – A Helm Chart (plus set of container images) to deploy XOS
 - *Micro-services*: xos-core, xos-gui, xos-tosca, xos-db, xos-ws, redis,…
Local Service Control (XOS)

XOS Constructed from Micro-Services

Views (UIs)

Data Model

Synchronizers

Backend Services and Resources
Example Model and Policy

policy grant_policy < ctx.user.is_admin
 | exists Privilege:Privilege.object_type = obj.object_type
 & Privilege.object_id = obj.object_id
 & Privilege.accessor_type = "User"
 & Privilege.accessor_id = ctx.user.id
 & Privilege.permission = "role:admin" >

message Privilege::grant_policy (XOSBase)
 { required int32 accessor_id = 1 [null = False];
 required string accessor_type = 2 [null = False, max_length=1024];
 required int32 controller_id = 3 [null = True];
 required int32 object_id = 4 [null = False];
 required string object_type = 5 [null = False, max_length=1024];
 required string permission = 6 [null = False, default = "all", max_length=1024];
 required string granted = 7 [content_type = "date", auto_now_add = True, max_length=1024];
 required string expires = 8 [content_type = "date", null = True, max_length=1024]; }
XOS Generative Toolchain

Generated Code
- API Tests
- Northbound Interfaces
- Enforce Security Policy
- Object Relation Mapper
- Synchronizer Framework
Core Models

Controller

Service

Service Instance

(Service)

(Distributed, Layered, and Composite Services)
Service Control and Data Planes

Service Control Plane

- Controller A
- Controller B
- Controller C
- Controller D
- Controller E

Service Data Plane

- Legacy VNF Running in a VM
- Horizontally Scalable Micro-Service
- SDN Control App
- Container Per Subscriber
- ...
Service Graph and Service Chains

Controller A
Controller B
Controller C
Controller D
Controller E

Subscriber 1
Subscriber 2

Service Chains
Service Graph – Residential Case

Service Graph

Service Chain = At the granularity of subscribers (or subscriber classes)
Service Graph – Mobile Case

Controller

vMME

Controller

vSPGW-c

vSPGW-u

Controller

vHSS

Controller

vSPGW

EPC-as-a-Service

Composite Services

Network Slicing
Service Graph – Mobile Case

Controller

Service Graph

Mobile Case

Controller

Graph

–

Mobile

Case

Controller

vHSS

Controller

vSPGW

Controller

vMME

Controller

vSPGW-c

Controller

vSPGW-u

Composite Services

Network Slicing

Off-load VNFs (to fabric)
Conclusion

CORD is a Multi-Access Edge Cloud
• Includes both Access-as-a-Service and Software-as-a-Service
• Uses Merchant Silicon and Function Disaggregation

XOS is a Framework for Configuring and Operating a Cloud Platform
• Supports Services as a Unifying Abstraction (implementation agnostic)
• Decouples Service Control Plane and Service Data Plane
• Uses Declarative Models and Generative Toolchain to Specify & Enforce Behavior
Conclusion

CORD integrates *Access-as-a-Service* into a multi-tenant cloud platform

- Disaggregated functionality with a mix of server- and switch-based implementations

XOS integrates the disaggregated components into a coherent whole (PaaS)

- Programmable framework with visibility and control at the granularity of subscribers
Conclusion

- IoT Service
- Analytics Service
- Low Latency Service
- Residential Service
- Mobile BB Service

XOS

SaaS APIs
PaaS APIs
AaaS APIs
NaaS APIs
IaaS APIs

ONOS

VOLT
xRAN
ProgRAN

VOLTHA

OLT
ACCESS NODES
RAN

NETWORKING FABRIC

Trellis
DHCP
MCast
vRouter

OpenStack
VMs
Kubernetes
Containers

COMPUTE INFRASTRUCTURE