
RAIL:	 Predictable,	Low	Tail	Latency	
for	NVMe Storage

Heiner Litz Ana	Klimovic
Christos	Kozyrakis



Flash	in	the	Datacenter

• Leverage	low	latency	for	user	facing	apps

• Disaggregate	to	improve	utilization

• Share	SSDs	among	multiple	tenants

• High	fan	out	à Predictable,	low	tail latency



Flash	Performance

Flash	Performance	
– 1M	IOPS	(4	GB/s)
– Read	latency:		80	µs
–Write	latency:		2	ms
– Erase	latency:	 5	ms

(Average)



Tail	Latency	vs.	Throughput

4

• Flash	read	performance	degrades	with	increasing	%	write

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

0	 250	 500	 750	 1000	 1250	

p9
5	
re
ad

	la
te
nc
y	
(u
s)
	

Total	IOPS	(Thousands)	

100%read	
99%read	
95%read	
90%read	
75%read	
50%read	

What	you	get

What	you	
expected	to	get



Read	– Write	Interference

• SSDs	deploy	parallel	NAND	chips	as	the	logical	
unit	(LUN)	of	parallelism

• Single	outstanding	operation	per	LUN

• Order	~100	LUNs	per	device

• Read	latency	is	caused	by	reads	getting	stuck	
behind	write	or	erase	on	same	LUN



RAIL

• Redundant	Array	of	Independent	LUNs

• Use	redundant	data	to	reduce	tail	read	latency

• When	reading	from	a	busy	LUN,	instead	re-
compute	data	from	parity

• GOAL:	Minimize	probability	that	reads	conflict	
with	writes.



L0 L1 L2 L3 L4 L5 L6 L7 L8

S0
S3

S0
S4

S0
S5

S1
S3

S1
S4

S1
S5

S2
S3

S2
S4

S2
S5

S6
S9

S7
S10

S8
S11

S8
S10

S6
S11

S7
S9

S7
S11

S8
S9

S6
S10

Data	Placement



Read	conflict	probability	(128	LUNs)

21x	Reduction



Implementation:	LightNVM and	
Open-Channel	SSDs

completion

Blk-mq

LBA PPA PPA PPA
LBA PPA PPA PPA
LBA PPA PPA PPA
LBA PPA PPA PPA
LBA PPA PPA PPA

Translation Table

OpenChannel SSD

GC

Read valid blks

move blks

reads

LUN busy?

RAIL 
readread

Blk-mq

writes

Parity (xor)

Writer

k-tuples
Lookup 
Table



0	
500	

1000	
1500	
2000	
2500	
3000	
3500	
4000	

0	 200000	 400000	 600000	 800000	

p9
9	
Re

ad
	L
at
en

cy
	(u

s)
	

IOPS	

pblk		
RAIL	

Results

0	
500	

1000	
1500	
2000	
2500	
3000	
3500	
4000	

0	 200000	 400000	 600000	 800000	

p9
9	
Re

ad
	L
at
en

cy
	(u

s)
	

IOPS	

pblk		
RAIL	

0	
500	

1000	
1500	
2000	
2500	
3000	
3500	
4000	

0	 200000	 400000	 600000	 800000	

p9
9	
Re

ad
	L
at
en

cy
	(u

s)
	

IOPS	

pblk		
RAIL	

0	
500	

1000	
1500	
2000	
2500	
3000	
3500	
4000	

0	 200000	 400000	 600000	 800000	

p9
9	
Re

ad
	L
at
en

cy
	(u

s)
	

IOPS	

pblk		
RAIL	

99%	Read 95%	Read

90%	Read 80%	Read



Software	FTLs
• Enable	new	exciting	opportunities
– Full	control	over	HW,	resource	allocation,	scheduling

• Application	specific	trade-offs
– RAIL:	Tail	latency	vs.	capacity	&	IOPS
– GC:	Spare	capacity	vs.	erases	&	writes
– QoS:	Latency	sensitive	vs.	batch

• Challenges
– Incorrect	SW	can	wear	out	devices	quickly
– Which	operations	should	be	in	HW/SW?
– Monitoring/feedback	from	HW	to	SW?



Conclusion
• RAIL	reduces	tail	latency	by	5x

• At	the	cost	of	write	bandwidth	and	capacity

• Software	FTL enables	user	configurable	tradeoffs:
– Latency
– Write	bandwidth
– Write	&	read	amplification
– Fault	tolerance
– Capacity



Backup



Non-Conflicting	Placements

1

4

16

64

256

1024

4096

16384

65536

8 16 32 64 128 256 512 1024

# 
o

f 
co

n
fl

ic
t-

fr
ee

 k
-t

u
p

le
s 

Number of LUNs 

RAIL optimal k=3 RAIL optimal k=4 RAIL optimal k =5

RAIL greedy k=3 RAIL greedy k=4 RAIL greedy k=5

Conventional SSD


