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Flash	in	the	Datacenter

• Leverage	low	latency	for	user	facing	apps

• Disaggregate	to	improve	utilization

• Share	SSDs	among	multiple	tenants

• High	fan	out	à Predictable,	low	tail latency



Flash	Performance

Flash	Performance	
– 1M	IOPS	(4	GB/s)
– Read	latency:		80	µs
–Write	latency:		2	ms
– Erase	latency:	 5	ms

(Average)



Tail	Latency	vs.	Throughput
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• Flash	read	performance	degrades	with	increasing	%	write
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Read	– Write	Interference

• SSDs	deploy	parallel	NAND	chips	as	the	logical	
unit	(LUN)	of	parallelism

• Single	outstanding	operation	per	LUN

• Order	~100	LUNs	per	device

• Read	latency	is	caused	by	reads	getting	stuck	
behind	write	or	erase	on	same	LUN



RAIL

• Redundant	Array	of	Independent	LUNs

• Use	redundant	data	to	reduce	tail	read	latency

• When	reading	from	a	busy	LUN,	instead	re-
compute	data	from	parity

• GOAL:	Minimize	probability	that	reads	conflict	
with	writes.
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Read	conflict	probability	(128	LUNs)

21x	Reduction



Implementation:	LightNVM and	
Open-Channel	SSDs
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Software	FTLs
• Enable	new	exciting	opportunities
– Full	control	over	HW,	resource	allocation,	scheduling

• Application	specific	trade-offs
– RAIL:	Tail	latency	vs.	capacity	&	IOPS
– GC:	Spare	capacity	vs.	erases	&	writes
– QoS:	Latency	sensitive	vs.	batch

• Challenges
– Incorrect	SW	can	wear	out	devices	quickly
– Which	operations	should	be	in	HW/SW?
– Monitoring/feedback	from	HW	to	SW?



Conclusion
• RAIL	reduces	tail	latency	by	5x

• At	the	cost	of	write	bandwidth	and	capacity

• Software	FTL enables	user	configurable	tradeoffs:
– Latency
– Write	bandwidth
– Write	&	read	amplification
– Fault	tolerance
– Capacity



Backup



Non-Conflicting	Placements
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