Wedge
A New Frontier for
Pull-based Graph Processing

Samuel Grossman and Christos Kozyrakis

& Platform Lab Retreat - June 8, 2018

T ) € p| A”TFORM

Stantord MAST



Graph Processing

* Problems modelled as objects(vertices) and connections between
them (edges)

* Examples:
* Internet (pages and hyperlinks)
 Social network (people and friendships)
* Roads and intersections
* Products and ratings
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Repeat until convergence
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Graph Processing

Frontier: set of active vertices
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: set of active vertices
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Graph Processing: Push and Pull

Push Pull

Group by source vertex Group by destination vertex
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Graph Processing: Push and Pull

Better at utilizing the frontier Higher throughput
N\
Push Pull

Group by source vertex Group by destination vertex
Dominated by atomic updates Dominated by reads
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Graph Processing: Hybrid Frameworks

- TN
V Get the benefits of both

Start :
| U Need to write the
Yes Frontier ) No application twice
.

Finish
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My Work

1. Grazelle

/"

™ Throughput
St?rt
Yes Frontier 2. Wedge

Redesigned to work for pull

Finish
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Wedge

* Software implementation of the new pull-based frontier optimization,
integrated into Grazelle

e Can outperform the hybrid version of Grazelle by up to 10x

* To be open-sourced



Frontier Implementation

* Bit-mask, allocated with one bit per vertex
* ‘1’ means active, ‘0’ means inactive

* Two exist: one is being produced while the other is consumed

* An engine sets the bit to ‘1’ for any vertex when it writes an updated
value to it

« Easy to ddor both push-based and pull-based engines



Frontier Consumption

Frontier
(1 bit per vertex)

Edge List




Frontier Consumption: Push

Frontier
(1 bit per vertex)

Edge List

(Sourcegrouped
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Frontier Consumption: Push

Frontier 0/00000000000f 0000
(1 bit per vertex)

Edge List

(Sourcegrouped
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Frontier Consumption: Push

Frontier 0/00000000000f0000
(1 bit per vertex)

Edge List

(Sourcegrouped
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Frontier Consumption: Push

Frontier 0/00000000000f0000
(1 bit per vertex)

Edge List
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Frontier Consumption: Push
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(1 bit per vertex)

Edge List

(Sourcegrouped
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Frontier Consumption: Pull

Frontier
(1 bit per vertex)

Edge List

(Destinationgrouped)



Frontier Consumption: Pull

Frontier
(1 bit per vertex)

_Pul

Edge List
(Destinationgrou

ned)
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Frontier Consumption: Pull

Frontier
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(1 bit per vertex) "'
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Frontier Consumption: Pull

Frontier
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Frontier Consumption: Pull

Frontier
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Frontier Consumption: Pull

Frontier 00000000000f0000
(1 bit per vertex) Voo
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Frontier Consumption: Pull

Frontier
(1 bit per vertex

Edge List
(Destinationgrou
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Frontier Consumption: Pull

Frontier
(1 bit per vertex

Edge List
(Destinationgrou
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Graph Processing: Push vs. Pull

, N @ Pull @ Push/Hybrid
100
No use of frontier Entirely frontier-driven
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Running Grazelle on uk-2007graph
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Towards a Pull-Based Frontier
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Towards a Pull-Based Frontier

Vertices 2 and 4 are added to the
frontier.
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Towards a Pull-Based Frontier

The active edges of the graph:
e *2->4

5 *2->6
*2—>8

6 ) (9) 49

» 8
: ' (

Insertvertices using the classic source orientation
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Towards a Pull-Based Frontier

The active edges of the graph:
*2->4
*2->6
*2—>8

Traverseusing a destination orientation
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Towards a Pull-Based Frontier

The active edges of the graph:

a *2 >4
e *2>6

0 *2->8
c4>9

\ o a 55

. .8 . 9

* + 1 million extra edges

° \\\\O(\

Traverseusing a destlnatlon orientation
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Towards a Pull-Based Frontier

The active edges of the graph:
a *2->4

) e *256
0 *2->8
(6) (9) *4>9
R,
1 9
s

Filter outinactive edges for each vertex
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Pull-Based Frontier Requirements

* Insertvertices using the classic source orientation
* Traverseusing a destination orientation

* Filter outinactive edges for each vertex



Wedge Frontier

* An edgeoriented frontier bit-mask

* Each bit represents a small number of edges in the destination-
groupededge list



Wedge Frontier

* An edgeoriented frontier bit-mask
V Filter outinactive edges for each vertex

* Each bit represents a small number of edges in the destination-
groupededge list

V Traverseusing a destination orientation
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Hybrid Functional Overview

Start

Yes Hofooofooofof No

Empty?

> Finish
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Wedge Functional Overview

V Insertvertices using the classic source orientation

flofloooflooflofoofoflooooofo

Finish
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Wedge Operation

foreach vertexv In source oriented frontier

{

/[ activate the vertex
activate_vertex (v, wedge frontier );

| \

Sets the correct bits in the Wedge frontier
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Hybrid Data Structures

DestinationGrouped
Edge List

* In-edges grouped by
destination vertex

SourceGrouped
Edge List

e Qut-edges grouped by source
vertex
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Wedge Data Structures

DestinationGrouped
Edge List

* In-edges grouped by
destination vertex
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Wedge Data Structures

DestinationGrouped SourceGrouped
Edge List Edge Index
* In-edges grouped by * Bit positions in the Wedge

destination vertex frontier, grouped by source
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Evaluation Scope

* Grazelle + Wedge is compared with the hybrid version of Grazelle

* Three applications: Single-Source Shortest Path, Breadth-First Search,
and Connected Components

* Running on a single Intel Xeon E5-2658 v3 processor
* 12 physical cores / 24 logical cores



Single-Source Shortest Path

Pull Engine Improvement
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Grazelle + Wedge does betterthan just closing the performance gap! .,



Single-Source Shortest Path

Zoomed In:Grazelle(Hybrid) vsGrazelle+ Wedge
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Breadth-First Search

Pull Engine Improvement

B Grazelle (Pull) @ Grazelle (Hybrid)

o dimacs-usa livejournal

O Grazelle + Wedge

twitter-2010
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Breadth-First Search
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Zoomed In:Grazelle(Hybrid) vsGrazelle+ Wedge
B Grazelle (Hybrid) @ Grazelle + Wedge (Pull) O Grazelle + Wedge (Wedge)
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Connected Components

Pull Engine Improvement

B Grazelle (Pull) @ Grazelle (Hybrid)

O Grazelle + Wedge

o dimacs-usa livejournal

twitter-2010
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Connected Components

Zoomed In:Grazelle(Hybrid) vsGrazelle+ Wedge
@ Grazelle (Hybrid) O Grazelle + Wedge (Pull) O Grazelle + Wedge (Wedge)

& dimacs-usa livejournal twitter-2010
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Conclusion

 Eliminated the only benefithat a push engine had over a pull
engine; the push engine is now obsolete!

* Implemented in software and integrated into Grazelle
e Can outperform the hybrid version of Grazelle by up to 10x

* To be open-sourced



Thank You



