Wedge
A New Frontier for
Pull-based Graph Processing

Samuel Grossman and Christos Kozyrakis

& Platform Lab Retreat - June 8, 2018

T) € p| A”TFORM

Stantord MAST

Graph Processing

* Problems modelled as objects(vertices) and connections between
them (edges)

* Examples:
* Internet (pages and hyperlinks)
 Social network (people and friendships)
* Roads and intersections
* Products and ratings

Graph Processing

Repeat until convergence

Graph Processing

Graph Processing

Graph Processing

Graph Processing

S/

Graph Processing

Frontier: set of active vertices

Graph Processing

: set of active vertices

Graph Processing

Graph Processing: Push and Pull

Push Pull

Group by source vertex Group by destination vertex

12

Graph Processing: Push and Pull

Better at utilizing the frontier Higher throughput
N\
Push Pull

Group by source vertex Group by destination vertex
Dominated by atomic updates Dominated by reads

13

Graph Processing: Hybrid Frameworks

- TN
V Get the benefits of both

Start :
| U Need to write the
Yes Frontier) No application twice
.

Finish

14

My Work

1. Grazelle

/"

™ Throughput
St?rt
Yes Frontier 2. Wedge

Redesigned to work for pull

Finish

15

Wedge

* Software implementation of the new pull-based frontier optimization,
integrated into Grazelle

e Can outperform the hybrid version of Grazelle by up to 10x

* To be open-sourced

Frontier Implementation

* Bit-mask, allocated with one bit per vertex
* ‘1’ means active, ‘0’ means inactive

* Two exist: one is being produced while the other is consumed

* An engine sets the bit to ‘1’ for any vertex when it writes an updated
value to it

« Easy to ddor both push-based and pull-based engines

Frontier Consumption

Frontier
(1 bit per vertex)

Edge List

Frontier Consumption: Push

Frontier
(1 bit per vertex)

Edge List

(Sourcegrouped

19

Frontier Consumption: Push

Frontier 0/00000000000f 0000
(1 bit per vertex)

Edge List

(Sourcegrouped

20

Frontier Consumption: Push

Frontier 0/00000000000f0000
(1 bit per vertex)

Edge List

(Sourcegrouped

21

Frontier Consumption: Push

Frontier 0/00000000000f0000
(1 bit per vertex)

Edge List

(Sourcegrouped

22

Frontier Consumption: Push

Frontier o\o\o\o\o\o\o\o\o\o\olo\o\o\

(1 bit per vertex)

Edge List

(Sourcegrouped

23

Frontier Consumption: Pull

Frontier
(1 bit per vertex)

Edge List

(Destinationgrouped)

Frontier Consumption: Pull

Frontier
(1 bit per vertex)

_Pul

Edge List
(Destinationgrou

ned)

25

Frontier Consumption: Pull

Frontier

000000000/000Fl0000
(1 bit per vertex) "'

[
[
]
[
L
[
.
]
[
1
[}
.
,
.,
’
[
L
,
[
[}
]
L
’
]
[}
,
.,
1
[
.
,
[
’
[
.
’
.,
.l

Edge List

(Destinationgrouped)

Frontier Consumption: Pull

Frontier

000000000/000Fl0000
(1 bit per vertex) "'

KR

Edge List

(Destinationgrouped)

Frontier Consumption: Pull

Frontier

000(000000/000Fl0000
(1 bit per vertex) Voo

N
[}
' [
' '
v !
v 0
v
'Y
g
[}
"
XY
(K
[N
[
' [}
' [}
[[}
. [}
N [}
h [}
H [}
[}
H .
N [}
K [y
" ‘
N [}
K [}
[}
! [}
' [}
’ [}

’ [}
' [}
! [}
[] [}
' [}
® ®

Edge List

(Destinationgrouped)

Frontier Consumption: Pull

Frontier 00000000000f0000
(1 bit per vertex) Voo

] . X
‘\ N . [
[. .
| . * e
[} . ¥
[. v
\y “ Y
[. FAN
v N Y
|' . K X
) A '\
S ’ 1y
’ .
’ Y
’ A}
’ .
l .
.
.
[}
%
] \
' ¥ ’ . A
' \ k) ‘
o ® ¢ . 5

Edge List

(Destinationgrouped

Frontier Consumption: Pull

Frontier
(1 bit per vertex

Edge List
(Destinationgrou

000000000000

\] [.

30

Frontier Consumption: Pull

Frontier
(1 bit per vertex

Edge List
(Destinationgrou

000000000000

\] [.

31

Graph Processing: Push vs. Pull

, N @ Pull @ Push/Hybrid
100
No use of frontier Entirely frontier-driven
10
o
>
1
Q
o
V)
0.1
0.01
. J PageRank Breadth-First Search
Logarithmic

Running Grazelle on uk-2007graph

Graph Processing: Push vs. Pull

, N @ Pull @ Push/Hybrid
100
No use of frontier Entirely frontier-driven
10
o
>
1
Q
o
V)
0.1
0.01
. J PageRank Breadth-First Search
Logarithmic

Running Grazelle on uk-2007graph

Towards a Pull-Based Frontier

2

8
: ' (

Towards a Pull-Based Frontier

Vertices 2 and 4 are added to the
frontier.

35

Towards a Pull-Based Frontier

The active edges of the graph:
e *2->4

5 *2->6
*2—>8

6) (9) 49

» 8
: ' (

Insertvertices using the classic source orientation

36

Towards a Pull-Based Frontier

The active edges of the graph:
*2->4
*2->6
*2—>8

Traverseusing a destination orientation

37

Towards a Pull-Based Frontier

The active edges of the graph:

a *2 >4
e *2>6

0 *2->8
c4>9

\ o a 55

. .8 . 9

* + 1 million extra edges

° \\\\O(\

Traverseusing a destlnatlon orientation

38

Towards a Pull-Based Frontier

The active edges of the graph:
a *2->4

) e *256
0 *2->8
(6) (9) *4>9
R,
1 9
s

Filter outinactive edges for each vertex

39

Pull-Based Frontier Requirements

* Insertvertices using the classic source orientation
* Traverseusing a destination orientation

* Filter outinactive edges for each vertex

Wedge Frontier

* An edgeoriented frontier bit-mask

* Each bit represents a small number of edges in the destination-
groupededge list

Wedge Frontier

* An edgeoriented frontier bit-mask
V Filter outinactive edges for each vertex

* Each bit represents a small number of edges in the destination-
groupededge list

V Traverseusing a destination orientation

42

Hybrid Functional Overview

Start

Yes Hofooofooofof No

Empty?

> Finish

43

Wedge Functional Overview

V Insertvertices using the classic source orientation

flofloooflooflofoofoflooooofo

Finish

44

Wedge Operation

foreach vertexv In source oriented frontier

{

/[activate the vertex
activate_vertex (v, wedge frontier);

| \

Sets the correct bits in the Wedge frontier

45

Hybrid Data Structures

DestinationGrouped
Edge List

* In-edges grouped by
destination vertex

SourceGrouped
Edge List

e Qut-edges grouped by source
vertex

46

Wedge Data Structures

DestinationGrouped
Edge List

* In-edges grouped by
destination vertex

47

Wedge Data Structures

DestinationGrouped SourceGrouped
Edge List Edge Index
* In-edges grouped by * Bit positions in the Wedge

destination vertex frontier, grouped by source

48

Evaluation Scope

* Grazelle + Wedge is compared with the hybrid version of Grazelle

* Three applications: Single-Source Shortest Path, Breadth-First Search,
and Connected Components

* Running on a single Intel Xeon E5-2658 v3 processor
* 12 physical cores / 24 logical cores

Single-Source Shortest Path

Pull Engine Improvement

B Grazelle (Pull) @ Grazelle (Hybrid) 0O Grazelle + Wedge

v 1.2
£1.0
|_

-5 0.8
5 0.6
@)

% 0.4
v 0.2
=

0.0

& dimacs-usa livejournal twitter-2010

Grazelle + Wedge does betterthan just closing the performance gap! .,

Single-Source Shortest Path

Zoomed In:Grazelle(Hybrid) vsGrazelle+ Wedge

B Grazelle (Hybrid) @ Grazelle + Wedge (Pull) O Grazelle + Wedge (Wedge)

o, 1.2
£1.0
|_

c 0.8

dimacs-usa livejournal twitter-2010

51

Breadth-First Search

Pull Engine Improvement

B Grazelle (Pull) @ Grazelle (Hybrid)

o dimacs-usa livejournal

O Grazelle + Wedge

twitter-2010

52

Breadth-First Search

o, 1.2
£1.0
|_

c 0.8

Zoomed In:Grazelle(Hybrid) vsGrazelle+ Wedge
B Grazelle (Hybrid) @ Grazelle + Wedge (Pull) O Grazelle + Wedge (Wedge)

- (Y0

dimacs-usa livejournal twitter-2010

53

Connected Components

Pull Engine Improvement

B Grazelle (Pull) @ Grazelle (Hybrid)

O Grazelle + Wedge

o dimacs-usa livejournal

twitter-2010

54

Connected Components

Zoomed In:Grazelle(Hybrid) vsGrazelle+ Wedge
@ Grazelle (Hybrid) O Grazelle + Wedge (Pull) O Grazelle + Wedge (Wedge)

& dimacs-usa livejournal twitter-2010

55

Conclusion

 Eliminated the only benefithat a push engine had over a pull
engine; the push engine is now obsolete!

* Implemented in software and integrated into Grazelle
e Can outperform the hybrid version of Grazelle by up to 10x

* To be open-sourced

Thank You

